본문 바로가기

전체 글213

등비수열 - 개요 - 이번에도 등차수열과 마찬가지로 특별한 규칙이 있는 수열을 다룰 것이다. - 등비수열 - 등비수열 : 연속하는 두 항의 비가 모두 일정한 수열 가령 2, 4, 8, 16, 32, ... 와 같은 수열이 있다면 연속하는 두 항의 비는 제1항과 제2항의 비율 = 1 : 2 제2항과 제3항의 비율 = 1 : 2 제3항과 제4항의 비율 = 1 : 2 따라서 이건 등비수열이다. 이때 두 항의 비는 수열의 모든 연속하는 두 항들의 공통적인 비 이므로 공비 라고 한다. 즉 등비수열에서 연속하는 두 항의 비가 공비이다. 아까 예로 들었던 2, 4, 8, 16, 32, ... 이 수열은 공비가 2인 등비수열이다. 공비는 영어로 common ratio 이고, 기호 r로 쓴다. - 등비수열의 일반항 - 2, 4,.. 2021. 9. 22.
등차수열 - 개요 - 내가 수열은 규칙이 없어도 된다고 했는데 보통 수학I에서는 규칙이 있는 수열을 다루고 여기서는 그 중 어떠한 특별한 규칙이 있는 '등차수열'을 다룰것이다. - 등차수열 - 등차수열 : 연속하는 두 항의 차이가 모두 일정한 수열 가령 1, 3, 5, 7, 9, ... 와 같은 수열이 있다면 연속하는 두 항의 차이는 제1항과 제2항의 차이 : 2 제2항과 제3항의 차이 : 2 제3항과 제4항의 차이 : 2 따라서 이건 등차수열이다. 이때 두 항의 차이는 수열의 모든 연속하는 두 항들의 공통적인 차이 이므로 공차 라고 한다. 즉 등차수열에서 연속하는 두 항의 차이가 공차이다. 아까 예로 들었던 1, 3, 5, 7, 9, ... 이 수열은 공차가 2인 등차수열이다. 공차는 영어로 common dif.. 2021. 9. 21.
수열의 정의 - 개요 - 수열은 최근 수능수학 킬러 포지션에 있는 단원이다. 15번으로 자주 나온다. 어려워서 틀린다기보단 수학I 이다보니까 다른 과목 하느라 공부를 안해서 틀린다고 보는게 맞다. 이번엔 수열의 기본 정의와 용어만 알아볼것이다. - 수열의 정의 - 영어로는 sequence 이다. 즉 수열이란 수를 순서 있게 나열한 것이다. 1, 2, 3, 4, 5 같은 게 수열이다. 수를 순서 있게 나열하기만 하면 되기 때문에 수열엔 규칙이 없어도 된다. 9, -π, 0.39, sin11°, 0 이런것도 수열이다. 다만 순서 있게 나열해야 하기 때문에 1, 2, 3, 4, 5와 2, 1, 3, 4, 5는 다른 수열이다. 여기서 수열을 이루는 각각의 수를 '항(term)' 또는 '원소(element)'라고 한다. 가령.. 2021. 9. 20.
삼각함수의 활용 - 사인법칙과 코사인법칙 요새 평가원이 꽤 비중을 두고 있는 단원이다. 어렵지는 않다. - 사인법칙 - 위 그림과 같이 삼각형의 한 변의 길이와 마주보는 각의 크기 이 두개와 관련된 법칙이다. 이 삼각형의 외접원을 그리면 이런식으로 될것이다. 반지름을 R이라 하겠다. 이때 사인법칙에 의해 이 식을 만족한다. 즉 삼각형의 변의 길이와 각의 사인 관계를 나타내는 정리이다. 삼각형의 한 변의 길이를 마주보는 각의 사인값으로 나눈 값은 외접원의 지름과 같다. 주의할건 어떤 변을 잡았던지 사인값에서의 각도는 그 변과 마주보는 각으로 잡아야한다. 그리고 sin이 등장한다고 무조건 사인법칙을 쓰는게 아니다. 저 관계를 나타냈더니 sin값과 이러한 관계가 있더라 라는 거지 sinθ 구하랬다고 무조건 사인법칙 쓰려고하지 말라는말 - 증명 - a.. 2021. 9. 20.
삼각방정식과 삼각부등식, 삼각형의 넓이 - 삼각방정식과 삼각부등식 - 삼각방정식과 삼각부등식은 지수 로그함수의 방정식과 부등식 풀때와 똑같이 하면 된다. 지수 로그함수 풀때 지수법칙 로그법칙 쓰듯이 삼각방정식과 삼각부등식도 삼각함수의 특성을 이용하면 되는것이다. 삼각함수가 포함된 방정식이 삼각방정식이고 삼각함수가 포함된 부등식이 삼각부등식이다. 푸는 방법은 간단하다. 1. 주어진 식을 sin, cos, tan중 하나로 통일한다. 2. 하던대로 풀면 된다. 3. 단 항상 이렇게푸는건 아니니까 외우지 말고 이해하자. 일차식 꼴로 나타내어진건 너무 쉬우니까 기본문제만 몇개 풀어보고 넘어가자. 이렇게 풀수도 있지만 이렇게 풀면 곤란해질만한 문제가 있다. 이렇게 하면 어떻게 할건가? sinx=1/3 을 만족하는 x값을 모르겠다. 하지만 합은 구할 수 .. 2021. 9. 16.
삼각함수의 정의와 성질, 삼각함수의 그래프 학습 목표는 1. 삼각함수의 정의를 말할 수 있어야한다. 2. 삼각함수의 그래프를 이해하고 그릴 수 있어야한다. 3. 삼각함수의 성질을 이해하고 활용할 줄 알아야한다. 중학교때 배운 삼각비의 확장개념이다. 들어가기에 앞서 삼각비를 복습해보자. 근데 이건 한계가 명확하다. 일단 직각삼각형인 경우에서밖에 못쓰고 그렇기 때문에 θ의 범위는 0 < θ < 90° 이다. 따라서 중등수학 수준에서 sin이 뭐냐고 물으면 빗변 분의 높이 입니다. 라는 정도로밖에 대답할수 없다. 삼각함수에서는 이 θ의 범위를 실수 전체로 확장한다. θ = -3π 이런 값에서도 다룬다는것이다. 그러면 더이상 직각삼각형으로는 설명할 수 없고 그래서 우리가 동경과 일반각에 대해 배운것이다. 삼각함수란 이 일반각을 변수로 하는 함수이다. f.. 2021. 9. 15.